3.733 \(\int \sqrt{a+b \cos (c+d x)} \sqrt{\sec (c+d x)} \, dx\)

Optimal. Leaf size=155 \[ -\frac{2 \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\sec (c+d x)} \sqrt{\frac{a (1-\cos (c+d x))}{a+b \cos (c+d x)}} \sqrt{\frac{a (\cos (c+d x)+1)}{a+b \cos (c+d x)}} (a+b \cos (c+d x)) \Pi \left (\frac{b}{a+b};\sin ^{-1}\left (\frac{\sqrt{a+b} \sqrt{\cos (c+d x)}}{\sqrt{a+b \cos (c+d x)}}\right )|-\frac{a-b}{a+b}\right )}{d \sqrt{a+b}} \]

[Out]

(-2*Sqrt[Cos[c + d*x]]*Sqrt[(a*(1 - Cos[c + d*x]))/(a + b*Cos[c + d*x])]*Sqrt[(a*(1 + Cos[c + d*x]))/(a + b*Co
s[c + d*x])]*(a + b*Cos[c + d*x])*Csc[c + d*x]*EllipticPi[b/(a + b), ArcSin[(Sqrt[a + b]*Sqrt[Cos[c + d*x]])/S
qrt[a + b*Cos[c + d*x]]], -((a - b)/(a + b))]*Sqrt[Sec[c + d*x]])/(Sqrt[a + b]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.143433, antiderivative size = 155, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.08, Rules used = {4222, 2811} \[ -\frac{2 \sqrt{\cos (c+d x)} \csc (c+d x) \sqrt{\sec (c+d x)} \sqrt{\frac{a (1-\cos (c+d x))}{a+b \cos (c+d x)}} \sqrt{\frac{a (\cos (c+d x)+1)}{a+b \cos (c+d x)}} (a+b \cos (c+d x)) \Pi \left (\frac{b}{a+b};\sin ^{-1}\left (\frac{\sqrt{a+b} \sqrt{\cos (c+d x)}}{\sqrt{a+b \cos (c+d x)}}\right )|-\frac{a-b}{a+b}\right )}{d \sqrt{a+b}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]],x]

[Out]

(-2*Sqrt[Cos[c + d*x]]*Sqrt[(a*(1 - Cos[c + d*x]))/(a + b*Cos[c + d*x])]*Sqrt[(a*(1 + Cos[c + d*x]))/(a + b*Co
s[c + d*x])]*(a + b*Cos[c + d*x])*Csc[c + d*x]*EllipticPi[b/(a + b), ArcSin[(Sqrt[a + b]*Sqrt[Cos[c + d*x]])/S
qrt[a + b*Cos[c + d*x]]], -((a - b)/(a + b))]*Sqrt[Sec[c + d*x]])/(Sqrt[a + b]*d)

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 2811

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[
(2*(a + b*Sin[e + f*x])*Sqrt[((b*c - a*d)*(1 + Sin[e + f*x]))/((c - d)*(a + b*Sin[e + f*x]))]*Sqrt[-(((b*c - a
*d)*(1 - Sin[e + f*x]))/((c + d)*(a + b*Sin[e + f*x])))]*EllipticPi[(b*(c + d))/(d*(a + b)), ArcSin[(Rt[(a + b
)/(c + d), 2]*Sqrt[c + d*Sin[e + f*x]])/Sqrt[a + b*Sin[e + f*x]]], ((a - b)*(c + d))/((a + b)*(c - d))])/(d*f*
Rt[(a + b)/(c + d), 2]*Cos[e + f*x]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2
, 0] && NeQ[c^2 - d^2, 0] && PosQ[(a + b)/(c + d)]

Rubi steps

\begin{align*} \int \sqrt{a+b \cos (c+d x)} \sqrt{\sec (c+d x)} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+b \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx\\ &=-\frac{2 \sqrt{\cos (c+d x)} \sqrt{\frac{a (1-\cos (c+d x))}{a+b \cos (c+d x)}} \sqrt{\frac{a (1+\cos (c+d x))}{a+b \cos (c+d x)}} (a+b \cos (c+d x)) \csc (c+d x) \Pi \left (\frac{b}{a+b};\sin ^{-1}\left (\frac{\sqrt{a+b} \sqrt{\cos (c+d x)}}{\sqrt{a+b \cos (c+d x)}}\right )|-\frac{a-b}{a+b}\right ) \sqrt{\sec (c+d x)}}{\sqrt{a+b} d}\\ \end{align*}

Mathematica [A]  time = 1.31723, size = 148, normalized size = 0.95 \[ \frac{2 \sqrt{\sec (c+d x)} \sqrt{\cos (c+d x) \sec ^2\left (\frac{1}{2} (c+d x)\right )} \sqrt{a+b \cos (c+d x)} \left ((a-b) F\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{b-a}{a+b}\right )-2 b \Pi \left (-1;-\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{b-a}{a+b}\right )\right )}{d (a+b) \sqrt{\frac{\sec ^2\left (\frac{1}{2} (c+d x)\right ) (a+b \cos (c+d x))}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]],x]

[Out]

(2*Sqrt[a + b*Cos[c + d*x]]*((a - b)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - 2*b*EllipticPi[-1
, -ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)])*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*Sqrt[Sec[c + d*x]])/((a
+ b)*d*Sqrt[((a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)])

________________________________________________________________________________________

Maple [A]  time = 0.616, size = 199, normalized size = 1.3 \begin{align*} 2\,{\frac{\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}} \left ( \sin \left ( dx+c \right ) \right ) ^{2}}{d\sqrt{a+b\cos \left ( dx+c \right ) } \left ( -1+\cos \left ( dx+c \right ) \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\sqrt{{\frac{a+b\cos \left ( dx+c \right ) }{ \left ( a+b \right ) \left ( 1+\cos \left ( dx+c \right ) \right ) }}} \left ( a{\it EllipticF} \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }},\sqrt{-{\frac{a-b}{a+b}}} \right ) -{\it EllipticF} \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }},\sqrt{-{\frac{a-b}{a+b}}} \right ) b+2\,b{\it EllipticPi} \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }},-1,\sqrt{-{\frac{a-b}{a+b}}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(1/2),x)

[Out]

2/d*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(a*EllipticF((-1+cos(d*x
+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))-EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b+2*b*Ellipti
cPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2)))/(a+b*cos(d*x+c))^(1/2)*(1/cos(d*x+c))^(1/2)*sin(d*x+c
)^2/(-1+cos(d*x+c))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \cos \left (d x + c\right ) + a} \sqrt{\sec \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \cos{\left (c + d x \right )}} \sqrt{\sec{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**(1/2)*sec(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(a + b*cos(c + d*x))*sqrt(sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \cos \left (d x + c\right ) + a} \sqrt{\sec \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)